Your title goes here

Name Surname ${ }^{1,3, \dagger}$, Name Surname ${ }^{2}$, and Name Surname ${ }^{1,2}$
${ }^{1}$ Department of Mathematics, Faculty of Science Chiang Mai University, Chiang Mai 50200, Thailand xxxx@mju.ac.th
${ }^{2}$ Department of Mathematics and Computer Science, Faculty of Science Chulalongkorn University, Bangkok 10330, Thailand xxxx@mju.ac.th
${ }^{3}$ Centre of Excellence in Mathematics CHE, Si Ayutthaya Rd., Bangkok 10400, Thailand xxxx@mju.ac.th

Abstract

Your abstract goes here (must not exceed 200 words). Your abstract goes here (must not exceed 200 words). Your abstract goes here (must not exceed 200 words). Your abstract goes here (must not exceed 200 words). Your abstract goes here (must not exceed 200 words). Your abstract goes here (must not exceed 200 words). Your abstract goes here (must not exceed 200 words). Your abstract goes here (must not exceed 200 words). Your abstract goes here (must not exceed 200 words).

Keywords: keyword 1, keyword 2, keyword 3, keyword 4.
2020 MSC: 99A99, 99B99, 99C99.

1 Introduction

Your text goes here. Separate text sections with the standard ${ }^{2} T_{E} \mathrm{X}$ sectioning commands. The concepts presented here are now in conventional employment in mathematics. Vector spaces are taken over the field $\mathbb{K}=\mathbb{R}$, however, established properties are easily extended to $\mathbb{K}=\mathbb{C}$. This is a good place to ask a question to test learning progress or further cement ideas into students' minds. With the compact formula for Möbius addition in hand, we give an algebraic proof that the unit ball of \mathbb{R}^{n} with Einstein addition does form a B-loop or a gyrocommutative gyrogroup with the uniquely 2-divisible property. As a consequence, we give a characterization of associativity and commutativity of the elements of Einstein gyrogroup $\left(\mathbb{B}, \oplus_{E}\right)$ [5].

2 Preliminaries

Your text goes here. Use the $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ automatism for your citations [1-5].

[^0]
2.1 Subsection Heading

Your text goes here.

$$
\begin{equation*}
\mathbf{a} \times \mathbf{b}=\mathbf{c}+\sum_{i=1}^{n} C_{i} \tag{2.1}
\end{equation*}
$$

2.1.1 Subsubsection Heading

Your text goes here. Use the $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ automatism for cross-references as well as for your citations, see Section 2.1.

Theorem 2.1. Theorem text goes here.
Proof. Proof goes here...
Lemma 2.2. Lemma text goes here.

3 Main Results

Problem 3.1. The problem is described here.

Acknowledgment. The authors are grateful to the referees for their careful reading of the manuscript and their useful comments.

References

[1] M. Ferreira, Hypercomplex analysis and applications, Trends in Mathematics, ch. Gyrogroups in Projective Hyperbolic Clifford Analysis, pp. 61-80, Springer, Basel, 2011.
[2] M. Ferreira and G. Ren, Möbius gyrogroups: A Clifford algebra approach, J. Algebra 328 (2011), 230-253
[3] Y. Friedman and T. Scarr, Physical applications of homogeneous balls, Progress in Mathematical Physics, vol. 40, Birkhäuser, Boston, 2005.
[4] S. Kim and J. Lawson, Unit balls, Lorentz boosts, and hyperbolic geometry, Results. Math. 63 (2013), 1225-1242.
[5] A. A. Ungar, Einstein's Special Relativity: The hyperbolic geometric viewpoint, PIRT Conference Proceedings, 2009, Budapest, September 4-6, 2009, pp. 1-35.

[^0]: ${ }^{\dagger}$ Corresponding author.

